Skip to main content
Log in

Regional Differences in Serotonin Transporter Occupancy by Escitalopram: An [11C]DASB PK-PD Study

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and objective

Escitalopram is one of the most commonly prescribed selective serotonin reuptake inhibitors (SSRIs). It is thought to act by blocking the serotonin transporter (SERT). However, its dose–SERT occupancy relationship is not well known, so it is not clear what level of SERT blockade is achieved by currently approved doses.

Methods

To determine the dose–occupancy relationship, we measured serial SERT occupancy using [11C]DASB [3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile] positron emission tomography (PET) and plasma drug concentrations after the administration of escitalopram in 12 healthy volunteers. We then built a pharmacokinetic–pharmacodynamic model to characterize the dose–occupancy relationship in the putamen and the dorsal raphe nucleus.

Results

Escitalopram at approved doses occupied less SERT than expected and the SERT occupancy showed regional effects [occupancy was higher in the dorsal raphe nucleus than in the putamen (p < 0.001)]. The drug concentration when 50 % of receptors are occupied (EC50) value and Hill coefficient were significantly different between the putamen (EC50 4.30, Hill coefficient 0.459) and the dorsal raphe nucleus (EC50 2.89, Hill coefficient 0.817).

Conclusions

Higher doses of escitalopram than 20 mg are needed to achieve 80 % or greater SERT occupancy. Higher occupancy by escitalopram in the dorsal raphe nucleus relative to the striatum may explain the delayed onset of action of SSRIs by modulating autoreceptor function. The prevention of the 5-HT1A autoreceptor-mediated negative feedback could be a strategy for accelerating the clinical antidepressant effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baldwin DS, Reines EH, Guiton C, Weiller E. Escitalopram therapy for major depression and anxiety disorders. Ann Pharmacother. 2007;41:1583–92.

    Article  CAS  PubMed  Google Scholar 

  2. Cipriani A, Furukawa TA, Salanti G, Geddes JR, Higgins JP, Churchill R, et al. Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet. 2009;373:746–58.

    Article  CAS  PubMed  Google Scholar 

  3. Wade AG, Crawford GM, Yellowlees A. Efficacy, safety and tolerability of escitalopram in doses up to 50 mg in Major Depressive Disorder (MDD): an open-label, pilot study. BMC Psychiatry. 2011;11:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dell’osso B, Arici C, Dobrea C, Camuri G, Benatti B, Altamura AC. Escitalopram tolerability as mono- versus augmentative therapy in patients with affective disorders: a naturalistic study. Neuropsychiatr Dis Treat. 2013;9:205–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shim G, Park HY, Jang JH, Kim E, Park HY, Hwang JY, et al. What is the optimal dose of escitalopram for the treatment of obsessive-compulsive disorder? A naturalistic open-label study. Int Clin Psychopharmacol. 2011;26:284–90.

    Article  PubMed  Google Scholar 

  6. Guerdjikova AI, McElroy SL, Kotwal R, Welge JA, Nelson E, Lake K, et al. High-dose escitalopram in the treatment of binge-eating disorder with obesity: a placebo-controlled monotherapy trial. Hum Psychopharmacol. 2008;23:1–11.

    Article  CAS  PubMed  Google Scholar 

  7. Meyer JH, Wilson AA, Sagrati S, Hussey D, Carella A, Potter WZ, et al. Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: an [11C]DASB positron emission tomography study. Am J Psychiatry. 2004;161:826–35.

    Article  PubMed  Google Scholar 

  8. Owens MJ, Krulewicz S, Simon JS, Sheehan DV, Thase ME, Carpenter DJ, et al. Estimates of serotonin and norepinephrine transporter inhibition in depressed patients treated with paroxetine or venlafaxine. Neuropsychopharmacology. 2008;33:3201–12.

    Article  CAS  PubMed  Google Scholar 

  9. Selvaraj S, Turkheimer F, Rosso L, Faulkner P, Mouchlianitis E, Roiser JP, et al. Measuring endogenous changes in serotonergic neurotransmission in humans: a [11C]CUMI-101 PET challenge study. Mol Psychiatry. 2012;17:1254–60.

    Article  CAS  PubMed  Google Scholar 

  10. Kim E, Howes OD, Kim BH, Jeong JM, Lee JS, Jang IJ, et al. Predicting brain occupancy from plasma levels using PET: superiority of combining pharmacokinetics with pharmacodynamics while modeling the relationship. J Cereb Blood Flow Metab. 2012;32:759–68.

    Article  CAS  PubMed  Google Scholar 

  11. First M, Spitzer R, Gibbon M, Williams J. Structured clinical interview for DSM-IV-TR axis I disorders, research version, non-patient edition: SCID-I/P, research. NYSPIDoB; 2002.

  12. Meyer JH, Wilson AA, Ginovart N, Goulding V, Hussey D, Hood K, et al. Occupancy of serotonin transporters by paroxetine and citalopram during treatment of depression: a [(11)C]DASB PET imaging study. Am J Psychiatry. 2001;158:1843–9.

    Article  CAS  PubMed  Google Scholar 

  13. Lundberg J, Christophersen JS, Petersen KB, Loft H, Halldin C, Farde L. PET measurement of serotonin transporter occupancy: a comparison of escitalopram and citalopram. Int J Neuropsychopharmacol. 2007;10:777–85.

    Article  CAS  PubMed  Google Scholar 

  14. Kang KW, Lee DS, Cho JH, Lee JS, Yeo JS, Lee SK, et al. Quantification of F-18 FDG PET images in temporal lobe epilepsy patients using probabilistic brain atlas. Neuroimage. 2001;14:1–6.

    Article  CAS  PubMed  Google Scholar 

  15. Lee JS, Lee DS. Analysis of functional brain images using population-based probabilistic atlas. Curr Med Imaging Rev. 2005;1:81–7.

    Article  Google Scholar 

  16. Ichise M, Liow JS, Lu JQ, Takano A, Model K, Toyama H, et al. Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab. 2003;23:1096–112.

    Article  PubMed  Google Scholar 

  17. Houle S, Ginovart N, Hussey D, Meyer JH, Wilson AA. Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB. Eur J Nucl Med. 2000;27:1719–22.

    Article  CAS  PubMed  Google Scholar 

  18. Parsey RV, Kent JM, Oquendo MA, Richards MC, Pratap M, Cooper TB, et al. Acute occupancy of brain serotonin transporter by sertraline as measured by [11C]DASB and positron emission tomography. Biol Psychiatry. 2006;59:821–8.

    Article  CAS  PubMed  Google Scholar 

  19. Turkheimer FE, Selvaraj S, Hinz R, Murthy V, Bhagwagar Z, Grasby P, et al. Quantification of ligand PET studies using a reference region with a displaceable fraction: application to occupancy studies with [(11)C]-DASB as an example. J Cereb Blood Flow Metab. 2012;32:70–80.

    Article  CAS  PubMed  Google Scholar 

  20. Schoemaker RC, van Gerven JM, Cohen AF. Estimating potency for the Emax-model without attaining maximal effects. J Pharmacokinet Biopharm. 1998;26:581–93.

    Article  CAS  PubMed  Google Scholar 

  21. Alvan G, Paintaud G, Wakelkamp M. The efficiency concept in pharmacodynamics. Clin Pharmacokinet. 1999;36:375–89.

    Article  CAS  PubMed  Google Scholar 

  22. Tauscher J, Jones C, Remington G, Zipursky RB, Kapur S. Significant dissociation of brain and plasma kinetics with antipsychotics. Mol Psychiatry. 2002;7:317–21.

    Article  CAS  PubMed  Google Scholar 

  23. Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther. 1979;25:358–71.

    Article  CAS  PubMed  Google Scholar 

  24. Coleman JA, Green EM, Gouaux E. X-ray structures and mechanism of the human serotonin transporter. Nature. 2016;532:334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeng Z, Chen TB, Miller PJ, Dean D, Tang YS, Sur C, et al. The serotonin transporter in rhesus monkey brain: comparison of DASB and citalopram binding sites. Nucl Med Biol. 2006;33:555–63.

    Article  CAS  PubMed  Google Scholar 

  26. Lundberg J, Tiger M, Landen M, Halldin C, Farde L. Serotonin transporter occupancy with TCAs and SSRIs: a PET study in patients with major depressive disorder. Int J Neuropsychopharmacol. 2012;15:1167–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baldinger P, Kranz GS, Haeusler D, Savli M, Spies M, Philippe C, et al. Regional differences in SERT occupancy after acute and prolonged SSRI intake investigated by brain PET. Neuroimage. 2014;88:252–62.

    Article  CAS  PubMed  Google Scholar 

  28. Hinz R, Selvaraj S, Murthy NV, Bhagwagar Z, Taylor M, Cowen PJ, et al. Effects of citalopram infusion on the serotonin transporter binding of [11C]DASB in healthy controls. J Cereb Blood Flow Metab. 2008;28:1478–90.

    Article  CAS  PubMed  Google Scholar 

  29. Sogaard B, Mengel H, Rao N, Larsen F. The pharmacokinetics of escitalopram after oral and intravenous administration of single and multiple doses to healthy subjects. J Clin Pharmacol. 2005;45:1400–6.

    Article  CAS  PubMed  Google Scholar 

  30. Burke WJ. Escitalopram. Expert Opin Investig Drugs. 2002;11:1477–86.

    Article  CAS  PubMed  Google Scholar 

  31. Rabinowitz I, Baruch Y, Barak Y. High-dose escitalopram for the treatment of obsessive-compulsive disorder. Int Clin Psychopharmacol. 2008;23:49–53.

    Article  PubMed  Google Scholar 

  32. Dougherty DD, Jameson M, Deckersbach T, Loh R, Thompson-Hollands J, Jenike M, et al. Open-label study of high (30 mg) and moderate (20 mg) dose escitalopram for the treatment of obsessive-compulsive disorder. Int Clin Psychopharmacol. 2009;24:306–11.

    Article  PubMed  Google Scholar 

  33. Savli M, Bauer A, Mitterhauser M, Ding Y-S, Hahn A, Kroll T, et al. Normative database of the serotonergic system in healthy subjects using multi-tracer PET. Neuroimage. 2012;63:447–59.

    Article  CAS  PubMed  Google Scholar 

  34. Kranz GS, Kasper S, Lanzenberger R. Reward and the serotonergic system. Neuroscience. 2010;166:1023–35.

    Article  CAS  PubMed  Google Scholar 

  35. Vauquelin G, Charlton SJ. Long-lasting target binding and rebinding as mechanisms to prolong in vivo drug action. Br J Pharmacol. 2010;161:488–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gifford AN, Gatley SJ, Volkow ND. Evaluation of the importance of rebinding to receptors in slowing the approach to equilibrium of high-affinity PET and SPECT radiotracers. Synapse. 1998;28:167–75.

    Article  CAS  PubMed  Google Scholar 

  37. Parsey RV, Slifstein M, Hwang DR, Abi-Dargham A, Simpson N, Mawlawi O, et al. Validation and reproducibility of measurement of 5-HT1A receptor parameters with [carbonyl-11C]WAY-100635 in humans: comparison of arterial and reference tissue input functions. J Cereb Blood Flow Metab. 2000;20:1111–33.

    Article  CAS  PubMed  Google Scholar 

  38. Malagie I, Trillat AC, Jacquot C, Gardier AM. Effects of acute fluoxetine on extracellular serotonin levels in the raphe: an in vivo microdialysis study. Eur J Pharmacol. 1995;286:213–7.

    Article  CAS  PubMed  Google Scholar 

  39. Gartside SE, Umbers V, Hajos M, Sharp T. Interaction between a selective 5-HT1A receptor antagonist and an SSRI in vivo: effects on 5-HT cell firing and extracellular 5-HT. Br J Pharmacol. 1995;115:1064–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bel N, Artigas F. Fluvoxamine preferentially increases extracellular 5-hydroxytryptamine in the raphe nuclei: an in vivo microdialysis study. Eur J Pharmacol. 1992;229:101–3.

    Article  CAS  PubMed  Google Scholar 

  41. Nord M, Finnema SJ, Halldin C, Farde L. Effect of a single dose of escitalopram on serotonin concentration in the non-human and human primate brain. Int J Neuropsychopharmacol. 2013;16:1577–86.

    Article  CAS  PubMed  Google Scholar 

  42. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology. 1999;38:1083–152.

    Article  CAS  PubMed  Google Scholar 

  43. Chaput Y, de Montigny C, Blier P. Effects of a selective 5-HT reuptake blocker, citalopram, on the sensitivity of 5-HT autoreceptors: electrophysiological studies in the rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1986;333:342–8.

    Article  CAS  PubMed  Google Scholar 

  44. Celada P, Bortolozzi A, Artigas F. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research. CNS Drugs. 2013;27:703–16.

    Article  CAS  PubMed  Google Scholar 

  45. Koch W, Unterrainer M, Xiong G, Bartenstein P, Diemling M, Varrone A, et al. Extrastriatal binding of [(1)(2)(3)I]FP-CIT in the thalamus and pons: gender and age dependencies assessed in a European multicentre database of healthy controls. Eur J Nucl Med Mol Imaging. 2014;41:1938–46.

    Article  CAS  PubMed  Google Scholar 

  46. Benmansour S, Cecchi M, Morilak DA, Gerhardt GA, Javors MA, Gould GG, et al. Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level. J Neurosci. 1999;19:10494–501.

    CAS  PubMed  Google Scholar 

  47. Kim E, Howes OD, Park JW, Kim SN, Shin SA, Kim BH, et al. Altered serotonin transporter binding potential in patients with obsessive-compulsive disorder under escitalopram treatment: [11C]DASB PET study. Psychol Med. 2016;46:357–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank June Hee Lee, Seong A Shin and Boeun Lee for their kind assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Soo Kwon.

Ethics declarations

Funding

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (no. NRF-2015R1A5A7037676) and Grant No. 14-2014-007 from the SNUBH Research Fund. Dr. Oliver Howes was funded by the Medical Research Council-UK (no. MC-A656-5QD30), the Maudsley Charity (no. 666), the Brain and Behavior Research Foundation, Wellcome Trust (no. 094849/Z/10/Z) and the National Institute for Health Research (NIHR) Biomedical Research Centre at the South London and Maudsley NHS Foundation Trust and King’s College London.

Conflicts of interest

Kim E. has participated in speaker meetings organized by Otsuka. Howes O.D. has received investigator-initiated research funding from, and/or participated in advisory/speaker meetings organized by, Astra-Zeneca, Autifony, BMS, Eli Lilly, Heptares, Jansenn, Lundbeck, Lyden-Delta, Otsuka, Servier, Sunovion, Rand and Roche. Kwon J.S. has received investigator-initiated research funding from Otsuka and has participated in advisory/speaker meetings organized by Jansenn, Otsuka and Dainippon Sumitomo Pharma. Kim B.-H., Chon M.-W., Turkheimer F.E., Lee J.S., Lee Y.-S., and Seo S. have no conflicts of interest. Neither the authors nor their families have been employed by, or have holdings/a financial stake in, any biomedical company.

Ethical approval

This study was conducted in observance with the Declaration of Helsinki after the study protocol was approved by the Institutional Review Board of Seoul National University Hospital.

Informed consent

Written informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E., Howes, O.D., Kim, BH. et al. Regional Differences in Serotonin Transporter Occupancy by Escitalopram: An [11C]DASB PK-PD Study. Clin Pharmacokinet 56, 371–381 (2017). https://doi.org/10.1007/s40262-016-0444-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-016-0444-x

Keywords

Navigation