클리닉소개

THE SEOUL YOUTH CLINIC

연구 및 치료성과

Thalamocortical dysrhythmia in patients with schizophrenia spectrum disorder and individuals at clinical high risk for psychosis
Journal
Neuropsychopharmacology
Author
Minah Kim, Tak Hyung Lee, Hyungyou Park, Sun-Young Moon, Silvia Kyungjin Lho, Jun Soo Kwon
Year
2021

Abstract

Thalamocortical dysrhythmia (TCD) is a model characterized by abnormal resting-state thalamic oscillatory patterns where the alpha rhythm is replaced by cross-frequency coupling of low- and high-frequency rhythms. Although disrupted thalamic function is a suggested important pathophysiological mechanism underlying schizophrenia, knowledge regarding the TCD model in schizophrenia spectrum disorder (SSD) patients and individuals at clinical high risk (CHR) for psychosis is limited. A total of 169 SSD patients, 106 individuals at CHR for psychosis, and 105 healthy controls (HCs) underwent resting-state electroencephalography recordings. We performed mean global field power (MGFP) spectral analysis between 1 and 49 Hz as well as source-level theta phase-gamma amplitude coupling (TGC) analysis and compared resting-state oscillatory patterns across groups. Correlations between altered TGC values and psychotic symptom severity in the patient group were investigated. Spectral MGFP of low- and high-frequencies was larger in the SSD and CHR groups than in the HC group. The TGC of SSD patients was greater than that of HCs in the right frontal, right parietal, and left and right limbic lobes. Greater TGC in the right frontal and limbic lobes was associated with positive symptom severity in SSD patients. However, TGC in the CHR group was comparable to that in the HCs and was smaller than that in the SSD group in widespread cortical regions. The TCD pattern may be apparent after frank psychotic disorder onset in tandem with overt positive symptoms. A psychosis-risk state without overt psychotic symptoms could be characterized by abnormally increased low- and high-frequency activities with relatively preserved TGC.